
©
 2017-2018 H

einz K
abutz, A

ll R
ights R

eserved

Turbo Charge CPU
Utilization in Fork/Join

Using the
ManagedBlocker

Dr Heinz M. Kabutz  
Last Updated 2018-01-26

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

Regular Fibonacci 1.000.000.000

!2

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

ManagedBlocker Fibonacci 1.000.000.000

!3

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

Initial Startup Regular Fib 1 billion

!4

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

Better Utilization In the Beginning

!5

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! By Leonardo of Pisa
– F0 = 0
– F1 = 1
– Fn = Fn-1 + Fn-2

Speeding Up Fibonacci

!6

8

13
21

2 3

5

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! Taking our recursive definition
– F0 = 0, F1 = 1
– Fn = Fn-1 + Fn-2

! Converting naïvely into Java:

! Computational Time Complexity is itself a fibonacci series

Naive Implementation

!7

8

13
21

2 3

5public long f(int n) {
 if (n <= 1) return n;
 return f(n-1) + f(n-2);
}

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! Dijkstra’s clever formula
– F2n-1 = Fn-12 + Fn2

– F2n = (2 × Fn-1 + Fn) × Fn

! Logarithmic time complexity
– Multiply in Java BigInteger

• Karatsuba complexity is O(n1.585)
• 3-way Toom Cook complexity is O(n1.465)
• Prior to Java 8, multiply() had complexity O(n2)
• BigInteger.multiply() single-threaded in Java - we’ll fix that later

Dijkstra's Sum of Squares

!8

8

13
21

2 3

5

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! Let's write this in Java with BigInteger
– F2n-1 = Fn-12 + Fn2

– F2n = (2 × Fn-1 + Fn) × Fn

Demo 1: Dijkstra’s Sum of Squares

!9

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! We can parallelize by using common Fork/Join Pool
– Next we fork() the 1st task, do the 2nd and then join 1st

Demo 2: Parallelize Our Algorithm

!10

RecursiveTask<BigInteger> f0_task = new RecursiveTask<BigInteger>() { 
 protected BigInteger compute() { 
 return f(half - 1); 
 } 
};
f0_task.fork(); 
BigInteger f1 = f(half); 
BigInteger f0 = f0_task.join();

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! 95% discount until 9pm this evening
– Also gets you onto The Java Specialists' Newsletter list :-)

! https://tinyurl.com/skg18

Data Structures in Java 9 Self-Study

!11

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! Let’s hack fork/join into:
– multiplyToomCook3()
– squareToomCook3()

! Choose modified BigInteger with
– -Xbootclasspath/p:<path_to_hack>
– Java 9 a bit more complicated - create a patch for module

Demo 3: Parallelize BigInteger

!12

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

!13

1 000 000

499 999 500 000

249 999 250 000 249 999 250 000

Level 0

Level 1

Level 2

16 x 31 249Level 5 16 x 31 250

32 x 15 624Level 6 32 x 15 625

32 x 7 811Level 7 64 x 7 812 32 x 7 813

7 904 x 60Level 14 8 192 x 61 288 x 62

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! Dijkstra's Sum of Squares needs to work out some values
several times. Cache results to avoid this.

– Careful to avoid a memory leak
• No static maps

Demo 4: Cache Results

!14

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! Instead of calculating same value twice:
– Use putIfAbsent() to insert special placeholder
– If result is null, we are first and start work
– If result is the placeholder, we wait

Demo 5: Reserved Caching Scheme

!15

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! ForkJoinPool is configured with desired parallelism
– Number of active threads
– ForkJoinPool mostly used with CPU intensive tasks

! If one of the FJ Threads has to block, a new thread can be
started to take its place

– This is done with the ManagedBlocker

! We use ManagedBlocker to keep parallelism high

Demo 6: ManagedBlocker

!16

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! Implement Fibonacci using
– CompletableFuture with methods

• thenAcceptBothAsync()
• complete()

– What happens with thread creation with no common ForkJoinPool?
• -Djava.util.concurrent.ForkJoinPool.common.parallelism=0

! Send your answers to heinz@javaspecialists.eu

Demo 7: CompletableFuture (Homework)

!17

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017-2018 H
einz K

abutz, A
ll R

ights R
eserved

! 95% discount until 9pm this evening
– Also automatically get The Java Specialists' Newsletter

! https://tinyurl.com/skg18

! And time for questions?

Data Structures in Java 9 Self-Study

!18

